2021年11月13日（土）
 第68回日本臨床検査医学会 EBLM委員会企画臨床検査領域に対する統計•機械学習的アプローチ

臨床検査の診断的有用性の評価法 その統計理論と使い方の実際

山口大学大学院医学系研究科
保健学系学域•生態情報検査学
市原清志

日本臨床検査医学会 COI 開示

発表者：市原清志
本講演に関し，開示すべきCOI関係にある企業などはありません

臨床検査領域で求められる統計処理技術

1）測定法の方法間比較（回帰直線の求め方）線形関係式と予測回帰式の違い
2 ）測定精度の評価と変動要因の分析（分散分析）検査室内QC：日間CV，日内CV，機種間CV検査室間QC：方法間CV，方法内CV
3）臨床検査の生理的変動分析

個体内変動要因分析（条件間比較分析：日内リズム，体位変化）病気以外で検査値が変化する要因の解明（重回帰分析）

4）臨床検査の病態変動分析 $=$ 診断的有用性評価
単一検査の診断性能評価（感度•特異度とROC分析）複数検査の比較評価（多重ロジスティック分析）組み合わせ診断方程式の作成

＜利用上のノウハウ＞

- 特定の要因の影響が強すぎる場合，傾向スコアでマッチング
- モデルに組み込める説明変数の上限
- 過剰適合への対応

［参考1］

測定法の方法間比較

（回帰直線の求め方）

方法間比較のための

Modle I 回帰
（1）$x \rightarrow y$ の回帰 $\quad \Sigma \Delta y^{2}$ を最少に
（2）$y \rightarrow x$ の回帰 $\Sigma \Delta x^{2}$ を最少に
Model II 回帰 $\left\{\begin{array}{lll}\text {（3）標準主軸回帰 } & \Sigma \Delta x \Delta y & \text { を最少に } \\ \text {（4）主成分回帰 } & \Sigma \Delta h^{2} & \text { を最少に } \\ \text {（5）Deming回帰 } & s_{d} & \text { を最少に }\end{array}\right.$

誤差分散比 $\lambda=\frac{e_{y}^{2}}{e_{x}^{2}}$

回帰直線の推定法

方法間比較では測定法AとBを同等に扱うため線形関係式を求める

測定法B

【参考2】

重回帰分析の基礎
 （利用のポイント）

重回帰式と回帰係数の意味

偏回帰係数 b_{1} と b_{2} から各説明変数と y の関係の強さを表すが，単位に依存する。 しかし標準偏回帰変数（stdß）に変換すれば，単位によらず関係の強さを評価できる。

標準偏回帰係数（stdß）の計算

標準偏回帰係数 $\fallingdotseq ~$ 偏相関係数

多変量回帰では，説明変数が追加される毎に，偏回帰係数が再配分される
（1）$y=a+b_{1} x_{1}$
（2）$y=a^{\prime}+b_{1}^{\prime} x_{1}+b_{2}^{\prime} x_{2}$
（3）$y=a^{\prime \prime}+b_{1}^{\prime \prime} x_{1}+b_{2}^{\prime \prime} x_{2}+b_{3}^{\prime \prime \prime} x_{3}$

	説明変数			
	性別	年齢	BMI	
（1）	目的変数	$\operatorname{std} \beta 1$	$\operatorname{std} \beta 2$	$\operatorname{std} \beta 3$
	HDL－C	$\mathbf{0 . 4 8 6}$		
	HDL－C	$\mathbf{0 . 4 8 5}$	$\mathbf{0 . 0 4 6}$	
	HDL－C	$\mathbf{0 . 3 8 2}$	$\mathbf{0 . 0 9 7}$	$\mathbf{- 0 . 2 8 8}$

年齢の追加で影響受けず BMIの追加で大きな変化

例題1：中性脂肪（TG）の生理的変動要因の分析

年齢	BMI	喫煙度	飲酒度	運動度	TG	HDL－C	LDL－C
61	23.3	0	3	2	1.21	1.92	4.21
55	27.0	2	1	0	2.06	1.12	4.17
54	26.8	0	0	3	0.91	1.63	2.96
43	20.3	0	1	0	1.39	1.00	3.41
30	23.0	0	4	1	0.43	1.97	2.95
57	23.2	0	2	1	0.71	1.92	2.68
61	23.1	0	0	0	0.97	1.55	4.31
63	26.0	0	0	3	1.27	1.11	2.84
22	19.5	1	0	0	0.47	1.26	1.89
52	23.8	1	2	1	1.75	1.78	3.15
25	22.8	0	1	0	0.67	1.43	3.63

健常男性：n＝240
対数変換 \square

目的変数 $\quad \log (T G)$

説明変数	$\boldsymbol{\beta}$	$\mathrm{SE}(\boldsymbol{\beta})$	$\operatorname{std} \boldsymbol{\beta}$	P値	R
年齢	0.0167	$\mathbf{0 . 0 0 3 5}$	$\mathbf{0 . 3 0 0}$	0.00000	0.300

年齢	0.0109	0.0038	0.176	0.00482	0.348
BMI	0.0843	0.0192	0.271	0.00002	

年齢	0.0106	0.0038	0.171	0.00623	
BMI	0.0845	0.0192	0.272	0.00002	
喫煙度	0.0787	0.0816	0.059	0.33570	

年 齢	0.0106	0.0039	0.171	0.00645	0.353
BMI	0.0845	0.0193	0.272	0.00002	
喫煙度	0.0794	0.0837	0.059	0.34350	
飲酒度	－0．0008	0.0421	－0．001	0.98435	
運動度	0.0022	0.0426	0.003	0.95921	

年齢	0.0136	0.0033	0.244	0.00006	0.433
BMI	0.0885	0.0167	0.316	0.00000	

年齢	0.0130	0.0033	0.234	0.00010	
BMI	$\mathbf{0 . 0 8 9 0}$	$\mathbf{0 . 0 1 6 5}$	0.318	0.00000	
喫煙度	$\mathbf{0 . 1 6 2 8}$	$\mathbf{0 . 0 7 0 1}$	$\mathbf{0 . 1 3 5}$	0.02108	

年齢	0.0131	0.0033	0.235	0.00010	0.458
BMI	0.0885	0.0165	0.316	0.00000	
喫煙度	0.1798	0.0716	0.149	0.01275	
飲酒度	－0．0411	0.0360	－0．068	0.25498	
運動度	0.0181	0.0364	0.029	0.62005	

ROC分析による

診断特性の計算
検査の診断的有用性に関する基本特性

感度•特異度だけでは，診断能は判断できない。両者を組み合わせた，尤度比またはオッズ比を用いる方が良い

例1

10

Probability 確率

（Likelihood：尤度）

$$
\frac{10}{10+\square}=\frac{1}{2}
$$

オッズは起こる場合と起こらない場合の比

$$
\begin{aligned}
& \text { 確率は起こる場合の } \\
& \text { 全体に対する比 }
\end{aligned}
$$

$$
\frac{\bullet}{\bullet \sim \vdots}=\frac{1}{5} \quad \frac{\bullet}{\square \sim \square}=\frac{1}{6}
$$

$$
O=\frac{P}{1-P}
$$

相互変換可能

例 3

$$
\frac{\bullet \sim:!}{\bullet \bullet}=\frac{5}{1} \quad \frac{\bullet \sim: \vdots}{\bullet \sim: \vdots}=\frac{5}{6}
$$

オッズも確率も起こりやすさの指標

尤度比 $=\frac{\text { 疾患群の陽性率 }}{\text { 非疾患群の侑陽性率 }}$

$$
\text { オッズ比 }=\frac{\text { 疾患群の陽性オッズ }}{\text { 非疾患群の偽陽性オッズ }}
$$

尤度比 $=\frac{90 / 100}{20 / 100}=\frac{0.9}{0.2}=4.5$

オッズ比 $=\frac{90 / 10}{20 / 80}=\frac{9.0}{0.25}=36$

検査の診断能の評価ではオッズ比が主に用いられる
これは，ロジスティック回帰で簡単に求まるため

ROC曲線による判別度の分析

尤度比もオッズ比も，cutoff値に依存したが，
AUCはcutoff値の段階的な変化で決めているので，診断能をより的確に表す

多重ロジスティック分析による複数検査の診断特性の比較

ロジスティック曲線による判別

2 群の分離度とROC曲線，ロジスティック曲線

2群の検査値

ROC曲線

ロジスティック曲線

多重ロジスティック曲線による判別

多重ロジスティック分析 ：検査の診断的有用性の総合評価

ロジステイック曲線の2つの表現型

疾患群に属する確率

$$
p=\frac{1}{1+e^{-X}}
$$

疾患群に属するオッズ
$\frac{p}{1-}$

多重ロジスティック回帰の回帰係数の意味は，式を $\mathrm{p}=$ でなく， $\mathrm{Odd}=$ の式に置き換えると分かる

多重ロジスティック曲線の 2 つの表現型

疾患群に属する確率

$$
p=\frac{1}{1+e^{-\left(\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{k} x_{k}\right)}}
$$

疾患群に属するオッズ

$$
\begin{aligned}
& \frac{p}{1-p}=e^{\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{k} x_{k}} \\
& \text { オッズ }(O)
\end{aligned}
$$

オッズ比の計算：2値変量（ダミー変数）の場合

$$
\begin{aligned}
x_{1}= & 1 \text { のとき } \\
& \boldsymbol{O}_{\boldsymbol{x}_{1}=\mathbf{1}}=\boldsymbol{e}^{\boldsymbol{a + \boldsymbol { b } _ { \mathbf { 1 } } \cdot \mathbf { 1 } + \boldsymbol { b } _ { \mathbf { 2 } } \boldsymbol { x } _ { 2 } + \cdots + \boldsymbol { b } _ { \boldsymbol { p } } \boldsymbol { x } _ { p }}} \\
x_{1}= & 0 \text { のとき }
\end{aligned}
$$

演算公式

$$
O_{x_{1}=0}=e^{a+b_{1} \cdot 0+b_{2} x_{2+}+\cdots+b_{p} x_{p}}
$$

$$
\begin{aligned}
& e^{0}=1 \\
& e^{x+y}=e^{x} \cdot e^{y} \\
& e^{x-y}=\frac{e^{x}}{e^{y}}
\end{aligned}
$$

$$
\text { オッズ比 } O R=\frac{O_{x_{1}=1}}{O_{x_{1}=0}}=\frac{e^{a+b_{1} \cdot 1+b_{2} x_{2}+\cdots+b_{p} x_{p}}}{e^{a+b_{1} \cdot 0+b_{2} x_{2}+\cdots+b_{p} x_{p}}}=e^{b_{1}}
$$

2値変数が1の場合， 0と比べ疾患群に属す オッズが何倍変わるか

指数演算の公式から
分母，分子を成分分解 すると，残るのは $e^{b_{1}}$

回帰係数の指数を取ると オッズ比が求まる

オッズ比の計算：連続変量の場合

$$
x_{1}=x+\triangle \text { のとき }
$$

$$
O_{x_{1}=x+\Delta}=e^{\alpha+\beta_{1}(x+\Delta)+\beta_{2} x_{2}+\cdots+\beta_{k} x_{k}}
$$

$$
x_{1}=x \text { のとき }
$$

$$
O_{x_{1}=x}=e^{\alpha+\beta_{1} \cdot x+\beta_{2} x_{2}+\cdots+\beta_{k} x_{k}}
$$

回帰係数に変化量－をかけて

指数を取ると
オッズ比が求まる

$$
\text { オッズ比 } O \boldsymbol{O}=\frac{O_{x_{1}=x+\Delta}}{O_{x_{1}=x}}=\frac{e^{\alpha+\beta_{1}(x+\Delta)+\beta_{2} x_{2}+\cdots+\beta_{k} x_{k}}}{e^{\alpha+\beta_{1} \cdot x+\beta_{2} x_{2}+\cdots+\beta_{k} x_{k}}}=e^{\beta_{1} \Delta}
$$

説明変数が ${ }^{-1}$ 変化したとき，
疾患群に属するオッズが何倍変化するか

例題2：敗血症に対する2つの検査法の診断能の比較

	敗血症	年齢	性別	検査A	検査B
1	0	25	1	1.96	1.27
2	0	28	0	1.34	2.69
3	0	26	1	2.44	2.80
4	0	31	0	1.70	1.19
5	0	34	0	1.18	2.90
6	0	36	0	1.78	2.18
7	0	35	1	1.88	4.57
8	0	37	0	1.70	2.00
9	0	38	0	0.48	1.69
10	1	42	0	1.78	2.25
11	0	39	0	1.00	0.73
12	0	38	0	1.70	1.75
13	1	48	1	2.72	3.08
14	0	42	0	1.78	2.52
15	0	42	0	0.08	1.04
16	0	46	1	2.22	2.75
17	0	42	1	0.78	1.61
18	1	49	0	3.42	4.27
19	1	46	0	2.38	2.56
20	1	48	1	3.16	3.54
21	0	49	0	1.18	1.45
22	0	48	1	1.96	2.82
23	1	52	0	1.96	4.05
24	1	57	0	3.74	4.70

	敗血症	年齢	性別	検査A	検査B
25	0	48	1	1.88	1.58
26	1	54	0	3.80	3.00
27	0	52	0	2.68	1.38
28	0	53	1	1.70	1.74
29	1	55	1	2.72	2.95
30	1	56	0	2.76	2.84
31	1	58	0	1.96	3.73
32	0	50	1	1.88	2.82
33	1	59	0	3.00	3.63
34	1	58	0	3.30	1.72
35	0	57	0	0.78	3.04
36	0	58	1	3.06	2.60
37	1	65	0	2.34	2.96
38	0	58	1	3.26	3.43
39	0	60	1	1.58	2.36
40	0	61	1	3.50	1.57
41	1	67	1	4.22	0.95
42	1	69	0	2.44	3.49
43	1	65	0	2.56	4.65
44	1	69	0	2.94	2.37
45	1	67	0	2.56	4.25
46	1	68	1	2.38	2.20
47	1	71	0	3.10	1.29
48	0	62	0	1.96	1.06

	敗血症	年齢	性別	検査A	検査B
49	0	66	1	3.58	1.81
50	0	64	0	3.06	0.95
51	1	70	0	2.68	3.96
52	0	65	0	1.78	2.23
53	1	74	0	3.18	3.44
54	1	73	0	4.58	3.32
55	1	71	0	2.02	3.05
56	1	72	1	3.08	2.99
57	1	70	0	2.60	2.67
58	0	69	0	1.96	2.51
59	0	71	0	2.02	1.12
60	1	77	1	4.34	1.72
61	0	71	1	5.18	2.84
62	1	74	0	2.38	3.34
63	0	75	1	1.48	3.50
64	1	77	0	3.56	5.33
65	1	80	0	4.02	3.10
66	1	79	1	2.10	3.53
67	1	84	0	5.38	4.13
68	1	80	1	5.38	2.74
69	1	81	1	1.96	2.43
70	1	85	0	4.62	3.63

敗血症（＋）36例
敗血症（－）34例

目的変数 $=$
敗血症の有無

	変数名	β	SE（ β ）	z	P	OR	$\Delta \beta$	95\％CI		AUC
	検査A	1.346	0.369	3.648	0.0003	3.841	1	1.864	7.914	0.836
	変数名	β	SE（ β ）	z	P	OR	$\Delta \beta$	95\％CI		AUC
1	検査B	1.232	0.333	3.693	0.0002	3.426	1	1.782	6.587	0.801

年齢の追加でstdßが低下

	変数名	$\boldsymbol{\beta}$	$\mathbf{S E}(\boldsymbol{\beta})$	\mathbf{z}	\mathbf{P}	$\mathbf{O R}$	$\boldsymbol{\Delta} \boldsymbol{\beta}$	$\mathbf{9 5 \%} \mathbf{C l}$	
1	年齢	0.067	0.026	2.610	0.0091	1.954	10	1.181	3.231
2	検査A	0.941	0.406	2.316	0.0206	2.563	1	1.156	5.682

		変数名	β	SE（ $\mathbf{\beta}^{\text {）}}$	z	P	OR	$\Delta \beta$	95\％CI		AUC
	1	年齢	0.096	0.028	3.457	0.0005	2.611	10	1.515	4.498	0.883
年齢の追加でstd阝変化せず	2	検査B	1.168	0.361	3.235	0.0012	3.217	1	1.585	6.529	
		変数名	β	SE（ $\mathbf{\beta}^{\text {）}}$	z	P	OR	$\Delta \beta$			AUC
	1	年齢	0.072	0.030	2.412	0.0159	2.060	10	1.145	3.706	0.903
直で判断すると，診断能は	2	検査A	0.960	0.457	2.101	0.0356	2.612	1	1.067	6.394	
	3	検査B	1.211	0.392	3.084	0.0020	3.355	1	1.555	7.241	
		変数名	β	SE（ $\mathbf{\beta}^{\text {）}}$	z	P	OR	$\Delta \beta$			AUC
	1	年齢	0.072	0.030	2.363	0.0182	2.047	10	1.130	3.709	0.928
P值から性別も診断に貢献しており	2	検査A	1.339	0.526	2.545	0.0109	3.814	1	1.361	10.691	
4指標の組合せ診断がべストと言える	3	検査B	1.442	0.468	3.079	0.0021	4.228	1	1.689	10.584	
	4	性別	－1．962	0.832	－2．358	0.0184	0.141	1	0.028	0.718	

検査Aが見かけ上，診断能が高かったのは年齢と相関があっため。 すなわち，疾患群で年齢が高かったため，交絡現象が生じたといえる。

例題3：HCVによる肝硬変（LC）と肝細胞癌（HCC）鑑別に用いる検査診断マーカの探索

研究目的：線維化の程度を揃えて，臨床検査値だけでLCとHCCを鑑別する

HCC	Age	Sex	FIB－4	PIVKA	AFP	ALT	AST	LDH	GGT	ALP	ChE	TBil	TP	Alb	Glu	Cre	UN	K	Hb	WBC	PLT	PT
1	81	1	4.16		137.2	48	45	205	52	215	107	0.6	6.8	3.65	95	0.87	12	4.05	11.9	4900	12.5	93.6
0	70	1	1.80	11.3	1.0	27	21	229	92			0.7	7.1	4.30		1.13	24		12.0	9760	15.7	90.8
1	73	1	14.75	33.4	95.4	148	145	228	78	325	135	0.9	7.9	3.60	87	0.78	25	4.00	13.5	3900	5.9	78.0
1	74	0	3.93	26.6		27	41	232	18	308	169	0.5	8.2	3.91	93	0.55	12	4.55	12.7	4950	14.9	84.7
0	75	1	6.16	22.8	3.7	16	23	169	34	192	292	1.4	7.7	4.90	103	0.86	21	4.20	14.3	4580	7.0	85.4
0	63	1	1.30		1.7	15	17		31			0.5	6.7	4.00		1.23	27	4.30	14.1	9610	21.3	
0	74	0	3.60		6.1	19	25		57	239		1.1	8.3	4.10	96	0.82	16	4.20	13.9	5280	11.8	
1	69	0	6.62		16.5	39	66	296	42	303	142	1.2	6.0	3.10		1.17	20	3.17	12.3	4890	11.0	
1	72	1	4.90		8.3	24	39	235	23	168	101	0.8	8.5	3.30	87	1.56	66	4.10	9.5	3370	11.7	
0	56	1	0.47		4.0	13	14	131	55	286		0.4	6.8	3.80	95	0.63	13	5.00	13.0	6570	46.0	
0	72	1	1.90	27.7	3.4	27	23	174	37	239	282	0.7	7.2	4.20	174	0.99	15	4.60	13.0	4220	16.8	98.8
0	67	0	1.94	20.8	3.8	8	19	192	17	321		0.8		4.10	135	0.50	15		14.0	3860	23.2	
0	41	0	0.97		3.8	23	24	268	35	409	356	0.6	7.0	3.60	99	0.68	8	3.70	12.9	11450	21.1	
0	74	0	5.36	11.0	6.9	28	51	251	22	262	133	0.8	6.8	3.30	114	0.90	20		6.2	3860	13.3	
0	74	0	6.05		4.9	11	28	505	23	127		0.8	7.3	4.30	92	0.61	12	3.63	11.0	5157	10.2	
0	66	1	1.65	16.3	7.8	29	37	178	24	260	313	0.5	7.5	3.80	114	0.72	12	4.40	13.0	7625	27.1	
0	34	1	0.65		1.0	28	23	194	16	267		0.9	7.0	4.40	87	1.00	12	3.70	15.0	3850	22.7	101.7
0	60	1	2.59	64.5	3.1	32	45	136	86	264	351	0.4	7.3	4.00	108	0.57	16	4.40	12.5	4310	18.4	95.5
0	79	0	1.77	12.1	2.9	12	18		15	261	233	0.5	7.1	3.80	93	0.93	23	4.70	9.3	3960	23.2	98.6

$\mathrm{n}=452$（HCC 129例，LC 323 例）

Kobayashi T，et al．Exploration and time－serial validation of logistic regression models composed of multiple laboratory tests for early detection of HCV－associated hepatocellular carcinoma．Clin Chim Acta．2021；521：137－143．doi：10．1016／j．cca．2021．06．022．

目的変数 ：HCC 有効データ数＝433［第1頁：群1］

次数	変数名	$\boldsymbol{\beta}$	$\mathbf{S E}(\boldsymbol{\beta})$	\mathbf{z}	\boldsymbol{P}	オッス比
0		-7.3821	0.84831			
1	AFP	0.91077	0.15146	6.0132	0.000000	2.4862
2	ALT	1.0327	0.25087	4.1165	0.000039	2.8087
3	FIB－4	0.73387	0.24448	3.0018	0.002683	2.0831

＜回帰の適合度指標＞
AIC＝286．0616， $\mathrm{AUC}=0.9197$

$$
\mathrm{FIB}-4=\frac{\text { 年齢 } \times \mathrm{AST}}{\mathrm{PLT} \times \sqrt{\mathrm{ALT}}}
$$

Age，Sex，Fib－4から，各症例のHCCらしさ （傾向スコア）を，MLRAで求める

目的変数：HCC 有効デー夕数＝446［第1頁：群1］

次数	変数名	$\boldsymbol{\beta}$	$\mathbf{S E}(\boldsymbol{\beta})$	\mathbf{z}	\mathbf{P}	オッス比
0		-2.4992	0.96608			
1	Age	-0.014346	0.013327	-1.0765	0.281706	0.8664
2	Sex	0.14463	0.24801	0.5832	0.559778	1.1556
3	FIB－4	1.9004	0.20592	9.2288	0.000000	6.6885

＜回帰の適合度指標＞
AIC＝418．3315， AUC＝0．8288

$\begin{array}{llllllllll}0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 & 1\end{array}$予測値 P （傾向スコア）

MLRAにより性別•年齢•FIB－4からHCCの傾向スコア（予測確率）を求め， HCC：LC＝1：1で症例をマッチング

目的変数：HCC 有効デー夕数＝184［第1頁：群1］

次数	変数名	$\boldsymbol{\beta}$	$\mathbf{S E}(\boldsymbol{\beta})$	\mathbf{z}	\mathbf{P}	オッズ比
0		-7.9131	1.4994			
1	AFP	0.98713	0.20234	4.8786	0.000001	2.6835
2	ALT	0.87235	0.32283	2.7022	0.006889	2.3925
3	TBil	-0.92558	0.42226	-2.1920	0.028380	0.3963
4	WBC	0.021824	$7.4114 \mathrm{E}-3$	2.9447	0.003233	8.8677

＜回帰の適合度指標＞ AIC＝184．7631，AUC＝0．8508

肝線維化の程度が同じ条件で，
HCCとLCの鑑斺が，4検査の組合せ により的確に行える

多重ロジスティック分析のポイント

■ 回帰係数から個々の要因（検査）の重要性を示す調整オッズ比（aOR）と信頼区間が求まる
■ aORは，説明変数の単位に依存するので，
必ず適切な変化幅を指定して計算

■ 説明変数の有用性比較にはP値を用いる。aORの比較は困難
■複数所見の組み合わせで，診断方程式を作成できる
複合診断の判別度を，ROC分析によりAUCで表せる
■ 総症例数が少ないと，過剰適合が生じ再現性に問題あり （総症例数 $\geqq 100$ が，めやす）
■ 疾患群の割合が少ないと，分析精度が落ちる
疾患症例数Nに対して，説明変数の数の許容限界はN／10

省略したスライド

例題4：突発性発疹（ES）を対象とした熱性けいれん（FS）と鉄欠乏性貧血の関連性の分析

井上佳也，他：日本小児科学会雑誌125（6）：883－891， 2021

痙攣	家族歴	月齢	性別	体重	来院時体温	WBC	RBC	Hb	Ht	MCV	MCH	MCHC	PLT	Lym	Mon	Gra	RDW	PCT	MPV	PDW	CRP
0	0	3	1	6.0	38.0	38	364	10.7	31.1	85.4	29.4	34.4	16.7	39.4	9.9	50.7	10.4	0.14	8.2	19.1	0.80
0	0	4	0	6.4	37.7	67	406	10.2	29.2	71.9	25.1	34.9	15.1	67.4	4.2	28.4	12.2	0.15	9.7	17.6	0.40
0	0	6	1	6.5	38.9	109	399	11.0	32.1	80.5	27.6	34.3	13.5	39.4	9.6	51.0	10.6	0.12	8.6	19.4	0.50
0	0	6	1	7.4	39.1	83	454	11.0	32.6	71.8	24.2	33.7	26.3	36.6	2.5	60.9	11.4	0.23	8.6	20.7	0.20
0	0	6	0	8.0	37.8	103	518	14.8	41.7	80.5	28.6	35.5	25.0	54.7	4.8	40.5	11.6	0.20	7.9	19.1	0.20
0	0	7	1	6.8	38.3	102	433	11.3	34.8	80.4	26.1	32.5	19.2	45.2	3.7	51.1	11.2	0.15	7.9	19.1	1.20
0	0	7		8.0	39.9	41	357	9.8	28.6	80.1	27.5	34.3	28.8	31.7	11.4	56.9	12.0	0.23	7.9	18.3	1.20
0	0	7	1	9.0	39.2	65	411	11.4	31.8	77.4	27.7	35.8	25.2	39.7	6.3	54.0	11.4	0.19	7.7	18.4	0.90
0	0	7	1	8.3	39.5	78	498	12.2	35.4	71.1	24.5	34.5	16.9	73.7	2.8	23.5	11.4	0.14	8.4	18.7	0.05
0	0	7	1	8.1	40.0	57	347	10.2	29.1	83.9	29.4	35.1	13.7	26.6	4.1	69.3	10.8	0.12	8.6	18.8	0.40
0	0	7	0	8.0	39.8	99	511	13.0	39.2	76.7	25.4	33.2	21.2	30.1	4.5	65.4	11.5	0.17	8.0	19.2	1.90
0	0	7	0	7.0	39.0	58	486	11.9	35.1	72.2	24.5	33.9	19.5	54.4	6.5	39.1	13.2	0.15	7.7	18.4	0.40
0	0	7	0	7.0	39.2	60	384	9.5	27.1	70.6	24.7	35.1	30.3	58.3	12.6	29.1	14.5	0.23	7.7	18.4	0.30
0	0	8	1	10.0	38.5	88	498	13.5	38.6	77.5	27.1	35.0	21.2	58.8	11.0	30.2	12.1	0.16	7.5	17.6	0.05
0	0	8		10.0	39.5	55	447	10.9	32.0	71.6	24.4	34.1	24.6	49.6	7.7	42.7	12.2	0.21	8.6	18.2	0.05
0	0	8	1	7.0	39.9	38	417	11.5	34.2	82.0	27.6	33.6	24.4	42.5	14.2	43.3	10.7	0.19	7.7	18.9	0.50
0	0	8	1	9.6	38.6	36	435	12.5	35.2	80.9	28.7	35.5	15.8	45.3	2.9	51.8	11.6	0.12	7.5	18.9	1.10
0	0	8	1	8.3	38.1	78	596	15.0	46.0	77.2	25.2	32.6	7.5	45.4	4.8	49.8	10.8	0.07	9.1	18.6	0.10
0	0	8	1	7.6	37.3	42	475	13.6	38.5	81.1	28.6	35.3	19.2	90.1	6.3	3.6	11.3	0.15	7.7	20.3	0.10
0	0	8	1	7.5	39.0	96	494	10.4	31.8	64.4	21.1	32.7	26.9	41.2	3.2	55.6	13.3	0.23	8.4	16.3	0.05
0	0	8	0	8.0	38.8	89	488	11.4	33.8	69.3	23.4	33.7	35.0	51.6	7.0	41.4	12.5	0.27	7.6	17.1	0.30
0	0	8	0	8.3	38.5	59	540	12.6	36.3	67.2	23.3	34.7	25.5	65.4	5.3	29.3	14.8	0.20	7.7	16.3	0.05
0	0	8	0	9.0	38.7	50	420	11.5	33.9	80.7	27.4	33.9	10.6	41.6	3.4	55.0	10.9	0.09	8.6	18.2	0.50
0	0	8	0	8.2	38.6	62	436	10.9	31.7	72.7	25.0	34.4	24.6	54.0	3.5	42.5	12.6	0.21	8.4	18.1	0.90

横断的研究 （cross sectional study）

集団調査型（1）診断マーカの探索
field survey

目的変数 ：痙特 有効データ数＝334［第1頁：群1］

次数	変漦名	β	SE（ β ）	z	P	オッズ比
0		－1．0304	9.4263			
1	家族歴	2.0930	0.41930	4.9917	0.000001	8.1093
2	月龅	0.038078	0.021624	1.7609	0.078258	1.2567
3	来院的体温	－0．072809	0.22788	－0．3195	0.749348	0.9298
4	MCV	$4.5718 \mathrm{E}-3$	0.040654	0.1125	0.910462	1.0138
5	CRP	0.18322	0.17892	1.0240	0.305828	1.2011

《回帰の適合度指標〉
AIC＝182．6863，AUC＝0．7846

目的変数 ：痙待 有効デー夕数＝334［第1頁：群1］

次数	変数名	$\boldsymbol{\beta}$	$\mathbf{S E}(\boldsymbol{\beta})$	\mathbf{z}	\mathbf{P}	オッズ比
0		-3.5110	0.48946			
1	家族㷴	2.0821	0.41478	5.0197	0.000001	8.0213
2	月藍	0.038528	0.020010	1.9254	0.054175	1.2601
3	CRP	0.17554	0.17742	0.9894	0.322470	1.1919

＜回帰の適合度指標＞
AIC＝178．8033，AUC＝0．7847

月齢をマッチングさせたデータによる再分析

45

```
目的変数 ：痕墔 有効データ数＝136［第1頁：群1］
```

次数	変数名	$\boldsymbol{\beta}$	$\mathbf{S E}(\boldsymbol{\beta})$	\mathbf{z}	\mathbf{P}	オッズ比
0		8.4905	12.538			
1	家族歴	3.1148	0.60391	5.1577	0.000000	22.5284
2	月齢	0.061439	0.060523	1.0151	0.310040	1.4458
3	来院時体温	-0.24856	0.28836	-0.8620	0.388698	0.7799
4	MCV	-0.020898	0.061772	-0.3383	0.735135	0.8822
5	CRP	0.39969	0.24840	1.6090	0.107606	1.4914

＜回帰の適合度指標〉
AIC＝113．9606， $\mathrm{AUC}=0.8050$

次数	変数名	β	SE（ β ）	z	P	オッズ比
0		－2．7900	1.0783			
1	家族歴	3.0511	0.58811	5.1879	0.000000	21.1377
2	月㫋	0.061184	0.059539	1.0276	0.304123	1.4435
3	CRP	0.35006	0.23741	1.4745	0.140349	1.4191

＜回帰の適合度指標〉
$\mathrm{AIC}=110.7915$ ， $\mathrm{AUC}=0.7992$

補足スライド

ROC曲線

複合
ROC曲線

＝1変量ロジスティック曲線

＝多重ロジスティック曲線

感度•特異度曲線によるカットオフ値の設定

通常，感度曲線と特異度曲線
の
交点をカットオフ値とする

感度•特異度曲線とカットオフ値の決め方

ROC曲線と対角線との交点のカットオフ値＝感度特異度曲線の交点のカットオフ値

IV－50

