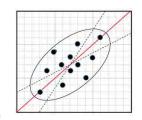
2021年11月13日(土) 第68回日本臨床検査医学会 EBLM委員会企画 臨床検査領域に対する統計・機械学習的アプローチ

臨床検査の診断的有用性の評価法その統計理論と使い方の実際

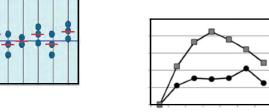
山口大学大学院医学系研究科 保健学系学域・生態情報検査学 市原清志


日本臨床検査医学会 COI開示

発表者:市原清志

本講演に関し、開示すべきCOI 関係にある企業などはありません

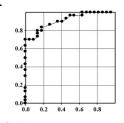
臨床検査領域で求められる統計処理技術


1) **測定法の方法間比較(回帰直線の求め方)** 線形関係式と予測回帰式の違い

2) 測定精度の評価と変動要因の分析(分散分析)

検査室内QC:日間CV、日内CV、機種間CV

検査室間QC:方法間CV、方法内CV



3) 臨床検査の生理的変動分析

個体内変動要因分析(**条件間比較分析**:日内リズム、体位変化) 病気以外で検査値が変化する要因の解明(**重回帰分析**)

4) 臨床検査の病態変動分析=診断的有用性評価

単一検査の診断性能評価(感度・特異度とROC分析) 複数検査の比較評価(多重ロジスティック分析) 組み合わせ診断方程式の作成

<利用上のノウハウ>

- ・特定の要因の影響が強すぎる場合、**傾向スコア**でマッチング
- ・モデルに組み込める説明変数の上限
- ・過剰適合への対応

【参考1】

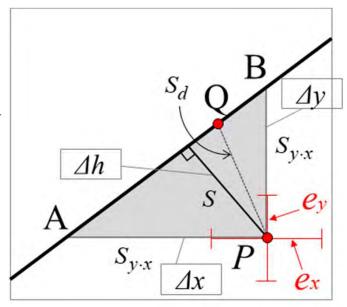
測定法の方法間比較

(回帰直線の求め方)

方法間比較のための 回帰直線の求め方 Modle I 回帰

① $x \to y$ の回帰 $\Sigma \Delta y^2$ を最少に ② $y \to x$ の回帰 $\Sigma \Delta x^2$ を最少に

③ 標準主軸回帰 *ΣΔxΔy* を最少に

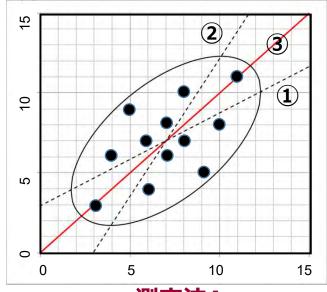

④ 主成分回帰 を最少に $\Sigma \Delta h^2$

⑤ Deming回帰 を最少に S_d

Model I 回帰

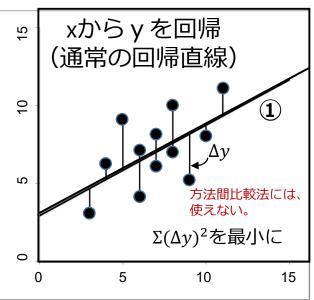
巡定法B ③ Passing-Bablok 回帰・・・ノンパラ法 \overline{y}

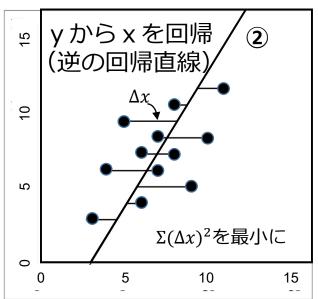
測定法A

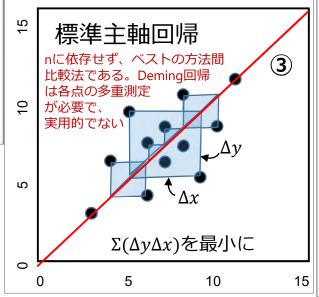

誤差分散比
$$\lambda = \frac{e_y^2}{e_x^2}$$

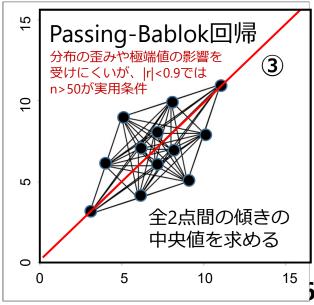
回帰直線の推定法

方法間比較では測定法AとBを同等に扱うため線形関係式を求める

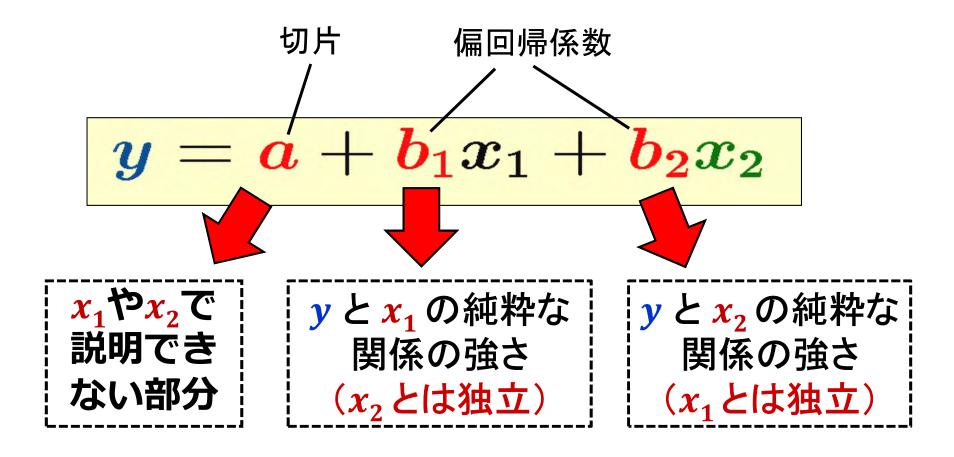

回帰直線






測定法A

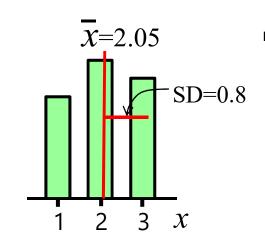
線形関係式

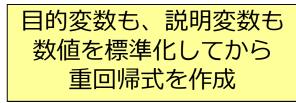


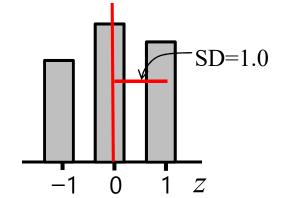
【参考2】

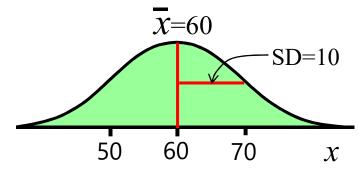
重回帰分析の基礎 (利用のポイント)

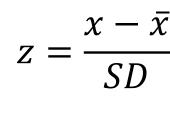
重回帰式と回帰係数の意味

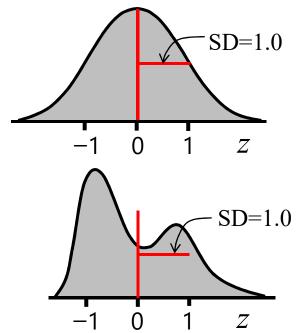

偏回帰係数 b_1 と b_2 から各説明変数とyの関係の強さを表すが、単位に依存する。しかし標準偏回帰変数($std\beta$)に変換すれば、単位によらず関係の強さを評価できる。

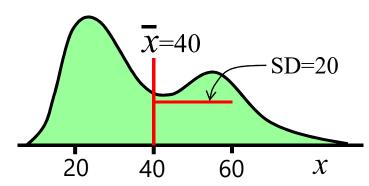

標準偏回帰係数(stdβ)の計算


標準偏回帰係数 🗧


Standard partial regression coefficient

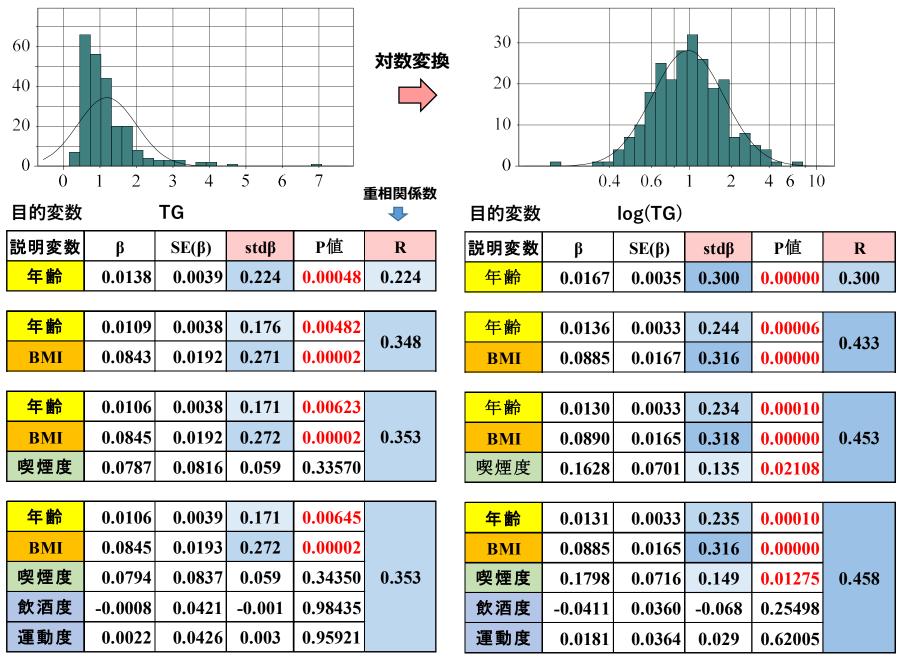

偏相関係数 partial correlation coefficient



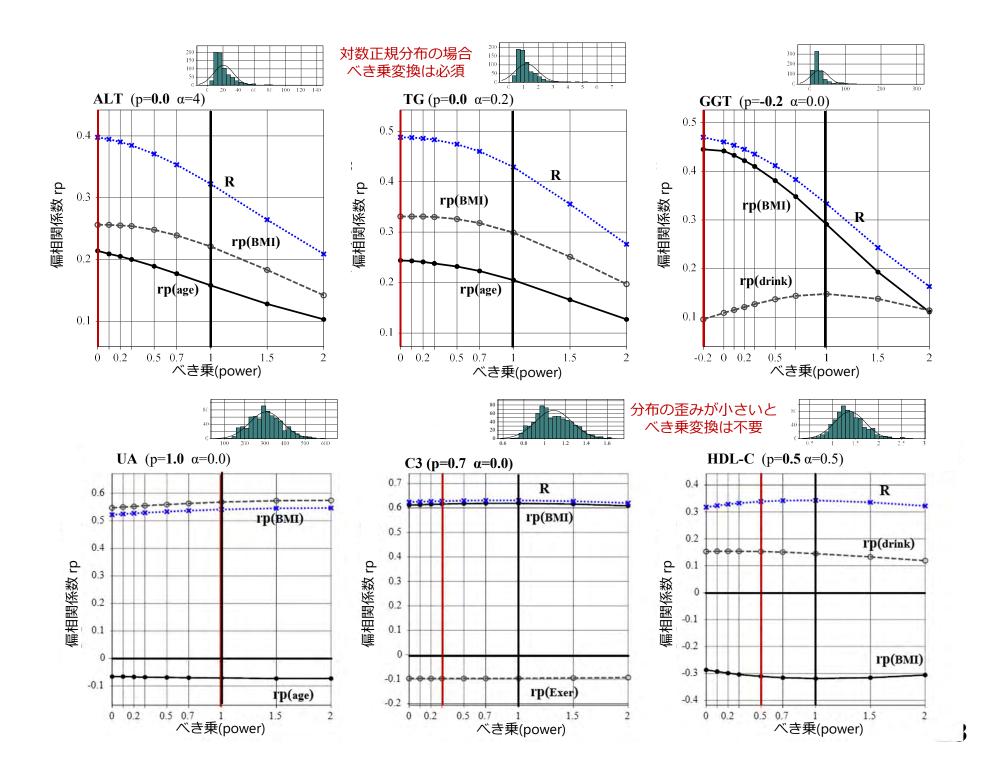


多変量回帰では、説明変数が追加される毎に、 偏回帰係数が再配分される

			説明変数	
		性別	年齢	ВМІ
	目的変数	stdβ1	stdβ2	stdβ3
1	HDL-C	0.486		
2	HDL-C	0.485	0.046	
3	HDL-C	0.382	0.097	-0.288

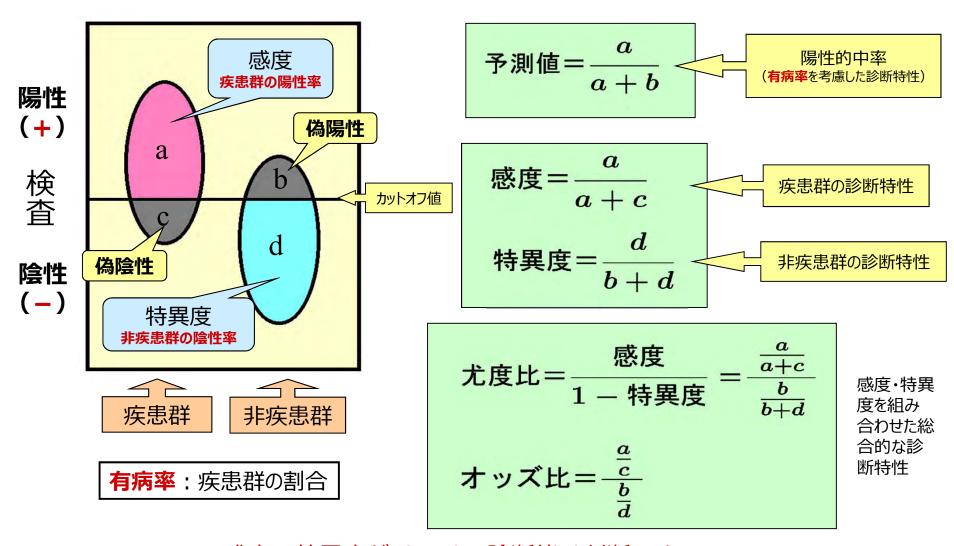

年齢の追加で影響受けず

BMIの追加で大きな変化


例題1:中性脂肪 (TG)の生理的変動要因の分析

年齡	ВМІ	喫煙度	飲酒度	運動度	TG	HDL-C	LDL-C
61	23.3	0	3	2	1.21	1.92	4.21
55	27.0	2	1	0	2.06	1.12	4.17
54	26.8	0	0	3	0.91	1.63	2.96
43	20.3	0	1	0	1.39	1.00	3.41
30	23.0	0	4	1	0.43	1.97	2.95
57	23.2	0	2	1	0.71	1.92	2.68
61	23.1	0	0	0	0.97	1.55	4.31
63	26.0	0	0	3	1.27	1.11	2.84
22	19.5	1	0	0	0.47	1.26	1.89
52	23.8	1	2	1	1.75	1.78	3.15
25	22.8	0	1	0	0.67	1.43	3.63

健常男性:n=240



TG分布の歪みを調整すると、stdβが高くなる 12

ROC分析による 診断特性の計算

検査の診断的有用性に関する基本特性

感度・特異度だけでは、診断能は判断できない。 両者を組み合わせた、尤度比またはオッズ比を用いる方が良い

オッズと確率

Odds

オッズ

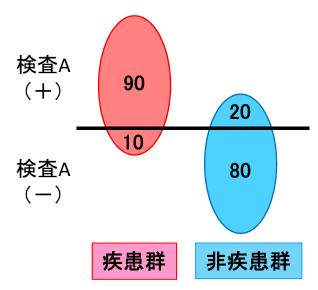
Probability 確率

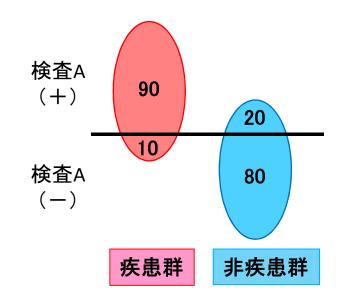
(Likelihood:尤度)

$$\frac{10}{1} = \frac{1}{1}$$

$$\frac{10}{10+} = \frac{1}{2}$$

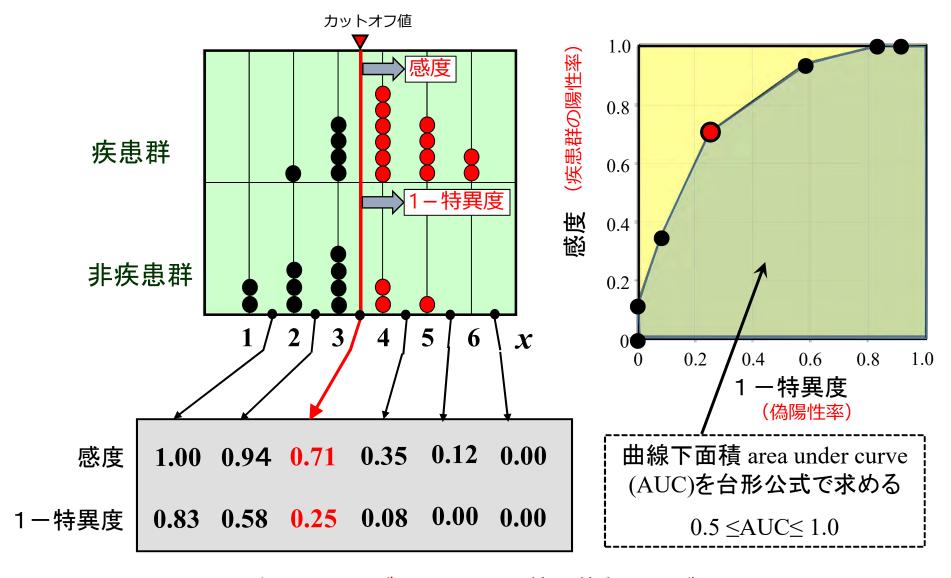
オッズは起こる場合と 起こらない場合の比


確率は起こる場合の 全体に対する比


$$\frac{\begin{array}{c|c} \bullet & \sim & \bullet \\ \hline \bullet & & \end{array}}{\begin{array}{c} \bullet & \bullet \\ \hline \end{array}} = \frac{5}{1}$$

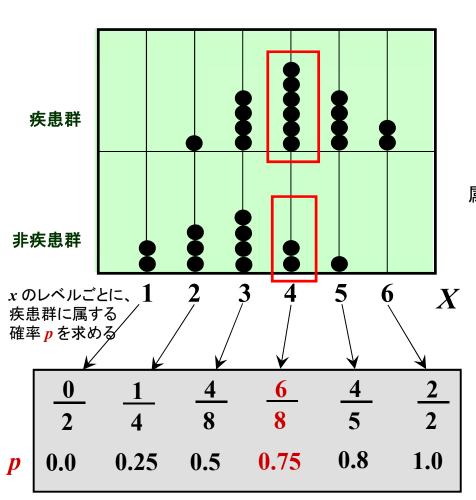
$$\frac{\begin{array}{c|c} \bullet & \sim & \vdots \\ \hline \bullet & \sim & \vdots \\ \hline \end{array}}{\begin{array}{c|c} \bullet & \sim & \vdots \\ \hline \end{array}} = \frac{5}{6}$$

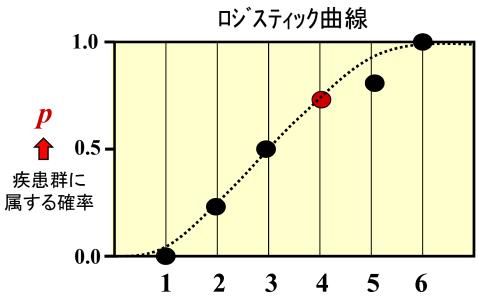
相互変換可能


尤度比=
$$\frac{90/100}{20/100} = \frac{0.9}{0.2} = 4.5$$

オッズ比=
$$\frac{90/10}{20/80} = \frac{9.0}{0.25} = 36$$

検査の診断能の評価ではオッズ比が主に用いられる これは、ロジスティック回帰で簡単に求まるため 問題は、尤度比もオッズ比も、カットオフ値に依存すること

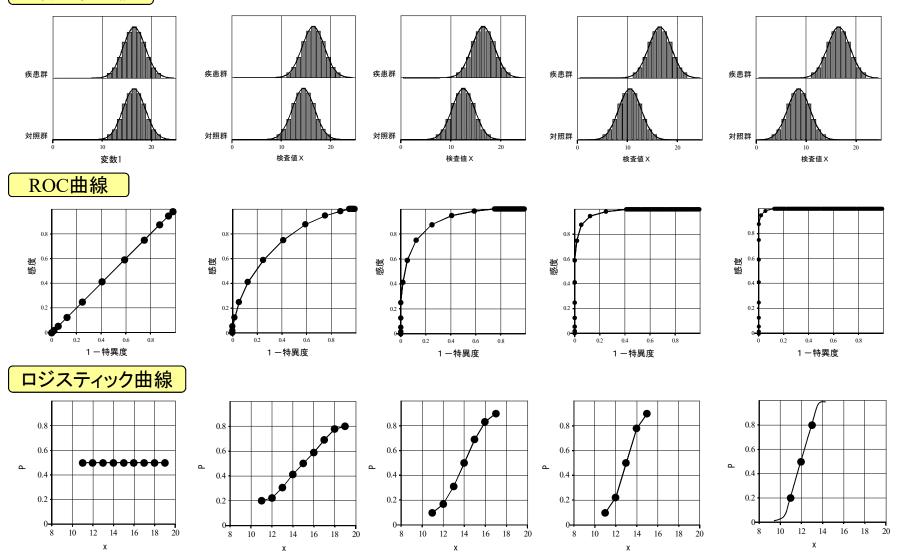

ROC曲線による判別度の分析

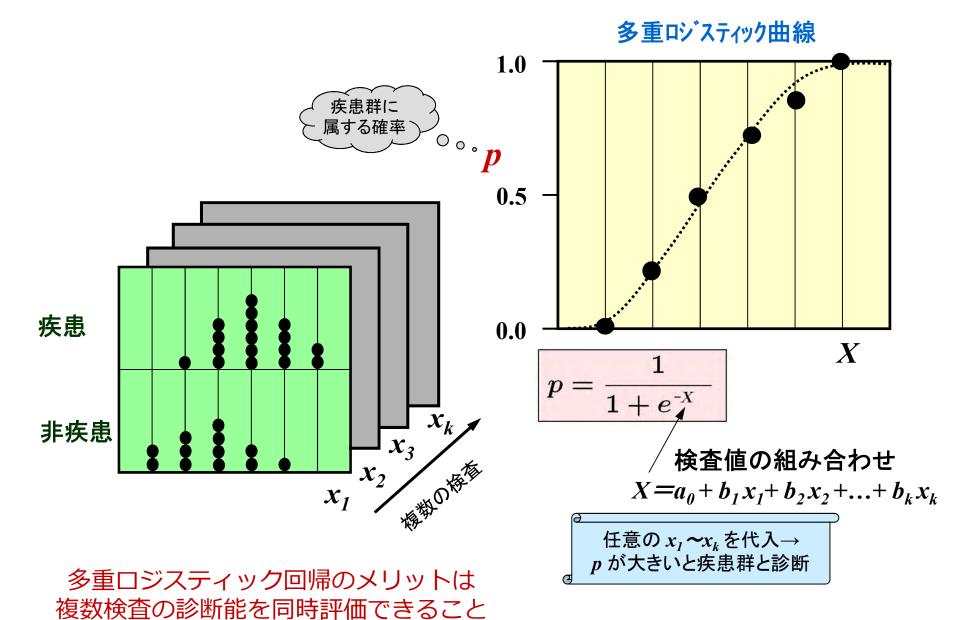

尤度比もオッズ比も、cutoff値に依存したが、 AUCはcutoff値の段階的な変化で決めているので、診断能をより的確に表す


多重ロジスティック分析による 複数検査の診断特性の比較

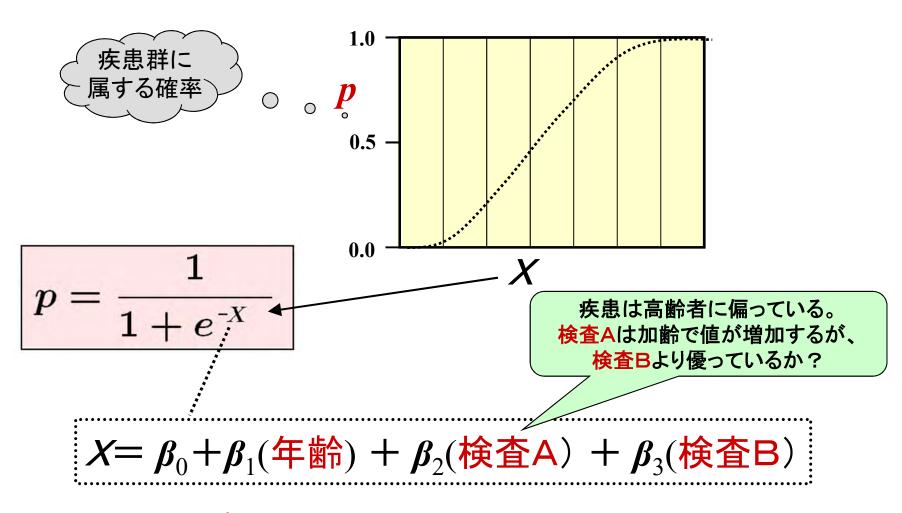
ロジスティック曲線による判別

ROC解析と一変量ロジスティック回帰は 検査の診断能の評価は、数理的に同等である

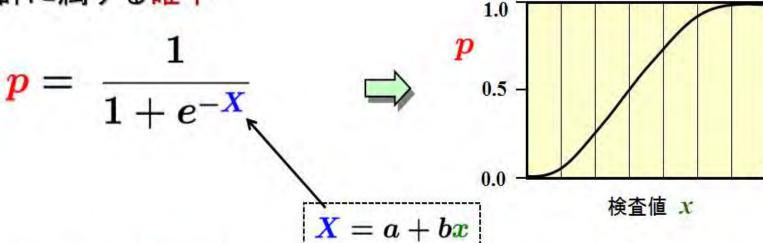



- 1) 回帰係数bが検査の診断能を表す
- 2) か0と有意に異なるかを検定
- 3) exp(b)は検査のオッズ比を表す

2群の分離度とROC曲線、ロジスティック曲線

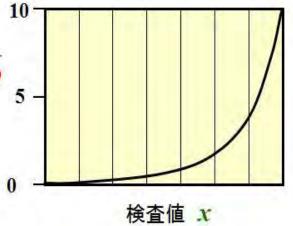

2群の検査値

多重ロジスティック曲線による判別


多重ロジスティック分析:検査の診断的有用性の総合評価

多重ロジスティック回帰のメリットは 交絡因子を制御しながら、複数検査の診断能を同時評価できること

ロジスティック曲線の2つの表現型


疾患群に属する確率

疾患群に属するオッズ

$$\frac{\frac{p}{1-p}}{1-\frac{p}{1}} = \frac{\frac{1}{1+e^{-X}}}{1-\frac{1}{1+e^{-X}}} = e^{X} \implies$$

多重ロジスティック回帰の回帰係数の意味は、 式をp=でなく、Odd=の式に置き換えると分かる

多重ロジスティック曲線の2つの表現型

疾患群に属する確率

$$p = \frac{1}{1 + e^{-(\alpha + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k)}}$$

疾患群に属するオッズ

$$\frac{p}{1-p} = e^{\alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k}$$

オッズ (**0**)

オッズ比の計算:2値変量(ダミー変数)の場合

$$oldsymbol{x_1} = oldsymbol{1}$$
 のとき $O_{oldsymbol{x_1}=oldsymbol{1}} = e^{a+b_1\cdot oldsymbol{1}+b_2oldsymbol{x_2}+\cdots+b_poldsymbol{x_p}}$

$$x_1 = 0$$
 のとき

$$O_{x_1=0}=e^{a+b_1\cdot 0+b_2x_2+\cdots+b_px_p}$$

演算公式

$$e^0=1$$
 $e^{x+y}=e^x\cdot e^y$ $e^{x-y}=rac{e^x}{e^y}$

オッズ比
$$OR = rac{O_{oldsymbol{x_1}=oldsymbol{1}}}{O_{oldsymbol{x_1}=oldsymbol{0}}} = rac{e^{a+b_1\cdot oldsymbol{1}+b_2oldsymbol{x_2}+\cdots+b_poldsymbol{x_p}}}{e^{a+b_1\cdot oldsymbol{0}+b_2oldsymbol{x_2}+\cdots+b_poldsymbol{x_p}}} = e^{b_1}$$

2値変数が1の場合、 0と比べ疾患群に属す オッズが何倍変わるか

指数演算の公式から 分母、分子を成分分解 すると、残るのは e^{b_1} オッズ比が求まる

回帰係数の 指数を取ると

オッズ比の計算:連続変量の場合

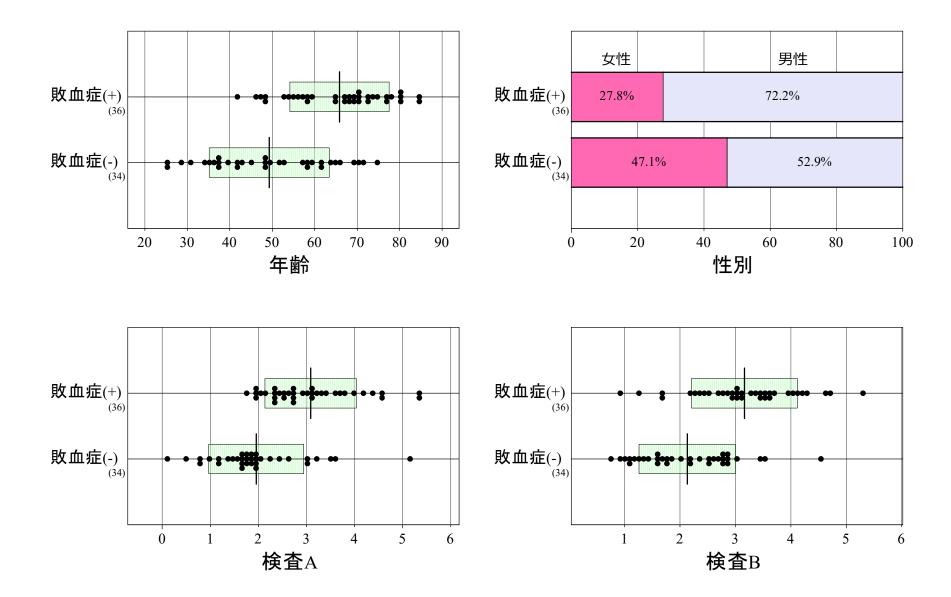
$$oldsymbol{x_1} = oldsymbol{x} + igtte O$$
 のとき $oldsymbol{O_{x_1=x}} = e^{lpha + eta_1(oldsymbol{x} + igtte A) + eta_2 x_2 + \cdots + eta_k x_k}$

$$oldsymbol{x_1} = oldsymbol{x}$$
のとき $oldsymbol{O_{x_1=x}} = e^{\;lpha+eta_1\cdot oldsymbol{x}\;\;+eta_2x_2+\cdots+eta_kx_k}$

回帰係数に 変化量▲をかけて 指数を取ると オッズ比が求まる

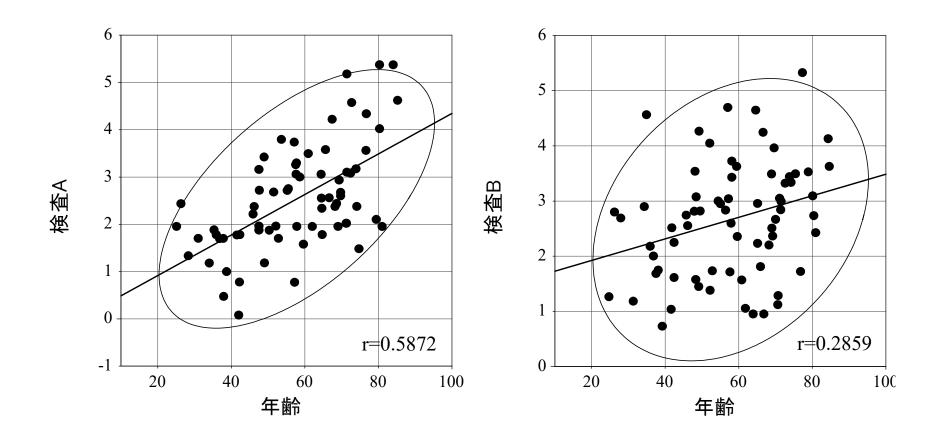
オッズ比
$$OR = rac{O_{x_1=x+left}}{O_{x_1=x}} = rac{e^{\,lpha+eta_1(x+left)+eta_2x_2+\cdots+eta_kx_k}}{e^{\,lpha+eta_1\cdot x+eta_2x_2+\cdots+eta_kx_k}} = e^{\,eta_1left}$$

説明変数が▲変化したとき、 疾患群に属するオッズが何倍変化するか


例題2:敗血症に対する2つの検査法の診断能の比較

	敗血症	年齢	性別	検査A	検査B
1	0	25	1	1.96	1.27
2	0	28	0	1.34	2.69
3	0	26	1	2.44	2.80
4	0	31	0	1.70	1.19
5	0	34	0	1.18	2.90
6	0	36	0	1.78	2.18
7	0	35	1	1.88	4.57
8	0	37	0	1.70	2.00
9	0	38	0	0.48	1.69
10	1	42	0	1.78	2.25
11	0	39	0	1.00	0.73
12	0	38	0	1.70	1.75
13	1	48	1	2.72	3.08
14	0	42	0	1.78	2.52
15	0	42	0	0.08	1.04
16	0	46	1	2.22	2.75
17	0	42	1	0.78	1.61
18	1	49	0	3.42	4.27
19	1	46	0	2.38	2.56
20	1	48	1	3.16	3.54
21	0	49	0	1.18	1.45
22	0	48	1	1.96	2.82
23	1	52	0	1.96	4.05
24	1	57	0	3.74	4.70

	敗血症	年齢	性別	検査A	検査B
25	0	48	1	1.88	1.58
26	1	54	0	3.80	3.00
27	0	52	0	2.68	1.38
28	0	53	1	1.70	1.74
29	1	55	1	2.72	2.95
30	1	56	0	2.76	2.84
31	1	58	0	1.96	3.73
32	0	50	1	1.88	2.82
33	1	59	0	3.00	3.63
34	1	58	0	3.30	1.72
35	0	57	0	0.78	3.04
36	0	58	1	3.06	2.60
37	1	65	0	2.34	2.96
38	0	58	1	3.26	3.43
39	0	60	1	1.58	2.36
40	0	61	1	3.50	1.57
41	1	67	1	4.22	0.95
42	1	69	0	2.44	3.49
43	1	65	0	2.56	4.65
44	1	69	0	2.94	2.37
45	1	67	0	2.56	4.25
46	1	68	1	2.38	2.20
47	1	71	0	3.10	1.29
48	0	62	0	1.96	1.06


	敗血症	年齢	性別	検査A	検査B
49	0	66	1	3.58	1.81
50	0	64	0	3.06	0.95
51	1	70	0	2.68	3.96
52	0	65	0	1.78	2.23
53	1	74	0	3.18	3.44
54	1	73	0	4.58	3.32
55	1	71	0	2.02	3.05
56	1	72	1	3.08	2.99
57	1	70	0	2.60	2.67
58	0	69	0	1.96	2.51
59	0	71	0	2.02	1.12
60	1	77	1	4.34	1.72
61	0	71	1	5.18	2.84
62	1	74	0	2.38	3.34
63	0	75	1	1.48	3.50
64	1	77	0	3.56	5.33
65	1	80	0	4.02	3.10
66	1	79	1	2.10	3.53
67	1	84	0	5.38	4.13
68	1	80	1	5.38	2.74
69	1	81	1	1.96	2.43
70	1	85	0	4.62	3.63

敗血症(+) 36例 敗血症(-) 34例

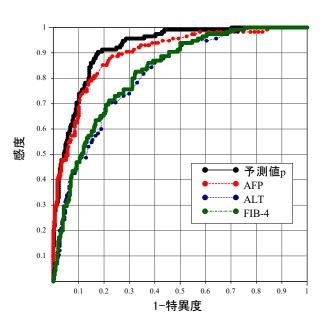
										Ţ	
目的変数 =		変数名	β	SE(β)	Z	P	OR	Δβ	959	%CI	AUC
敗血症の有無	1	検査A	1.346	0.369	3.648	0.0003	3.841	1	1.864	7.914	0.836
P値から、同等の診断能		変数名	β	SE(β)	z	Р	OR	Δβ	959	%CI	AUC
「同から、同寺の野町形	^ 1	検査B	1.232	0.333	3.693	0.0002	3.426	1	1.782	6.587	0.801
		変数名	β	SE(β)	Z	Р	OR	Δβ	959	%CI	AUC
	1	年齢	0.067	0.026	2.610	0.0091	1.954	10	1.181	3.231	0.852
年齢の追加でstdβが低下	2	検査A	0.941	0.406	2.316	0.0206	2.563	1	1.156	5.682	
		変数名	β	SE(β)	z	Р	OR	Δβ	959	%CI	AUC
	1	年齢	0.096	0.028	3.457	0.0005	2.611	10	1.515	4.498	0.883
年齢の追加でstdβ変化せず	2	検査B	1.168	0.361	3.235	0.0012	3.217	1	1.585	6.529	
		変数名	β	SE(β)	Z	Р	OR	Δβ	959	%CI	AUC
	1	年齢	0.072	0.030	2.412	0.0159	2.060	10	1.145	3.706	0.903
P値で判断すると、診断能は	2	検査A	0.960	0.457	2.101	0.0356	2.612	1	1.067	6.394	
検査B、年齢、検査Aの順となる	3	検査B	1.211	0.392	3.084	0.0020	3.355	1	1.555	7.241	
		変数名	β	SE(β)	Z	Р	OR	Δβ	959	%CI	AUC
	1	年齢	0.072	0.030	2.363	0.0182	2.047	10	1.130	3.709	0.928
P値から性別も診断に貢献しており	2	検査A	1.339	0.526	2.545	0.0109	3.814	1	1.361	10.691	
4指標の組合せ診断がベストと言える	3	検査B	1.442	0.468	3.079	0.0021	4.228	1	1.689	10.584	
	4	性別	-1.962	0.832	-2.358	0.0184	0.141	1	0.028	0.718	

検査Aが見かけ上、診断能が高かったのは年齢と相関があっため。 すなわち、疾患群で年齢が高かったため、交絡現象が生じたといえる。

例題3: HCVによる肝硬変(LC)と肝細胞癌(HCC) 鑑別に用いる検査診断マーカの探索

研究目的:線維化の程度を揃えて、臨床検査値だけでLCとHCCを鑑別する

HCC	Age	Sex	FIB-4	PIVKA	AFP	ALT	AST	LDH	GGT	ALP	ChE	TBil	TP	Alb	Glu	Cre	UN	K	Hb	WBC	PLT	PT
1	81	1	4.16		137.2	48	45	205	52	215	107	0.6	6.8	3.65	95	0.87	12	4.05	11.9	4900	12.5	93.6
0	70	1	1.80	11.3	1.0	27	21	229	92			0.7	7.1	4.30		1.13	24		12.0	9760	15.7	90.8
1	73	1	14.75	33.4	95.4	148	145	228	78	325	135	0.9	7.9	3.60	87	0.78	25	4.00	13.5	3900	5.9	78.0
1	74	0	3.93	26.6		27	41	232	18	308	169	0.5	8.2	3.91	93	0.55	12	4.55	12.7	4950	14.9	84.7
0	75	1	6.16	22.8	3.7	16	23	169	34	192	292	1.4	7.7	4.90	103	0.86	21	4.20	14.3	4580	7.0	85.4
0	63	1	1.30		1.7	15	17		31			0.5	6.7	4.00		1.23	27	4.30	14.1	9610	21.3	
0	74	0	3.60		6.1	19	25		57	239		1.1	8.3	4.10	96	0.82	16	4.20	13.9	5280	11.8	
1	69	0	6.62		16.5	39	66	296	42	303	142	1.2	6.0	3.10		1.17	20	3.17	12.3	4890	11.0	
1	72	1	4.90		8.3	24	39	235	23	168	101	0.8	8.5	3.30	87	1.56	66	4.10	9.5	3370	11.7	
0	56	1	0.47		4.0	13	14	131	55	286		0.4	6.8	3.80	95	0.63	13	5.00	13.0	6570	46.0	
0	72	1	1.90	27.7	3.4	27	23	174	37	239	282	0.7	7.2	4.20	174	0.99	15	4.60	13.0	4220	16.8	98.8
0	67	0	1.94	20.8	3.8	8	19	192	17	321		0.8		4.10	135	0.50	15		14.0	3860	23.2	
0	41	0	0.97		3.8	23	24	268	35	409	356	0.6	7.0	3.60	99	0.68	8	3.70	12.9	11450	21.1	
0	74	0	5.36	11.0	6.9	28	51	251	22	262	133	0.8	6.8	3.30	114	0.90	20		6.2	3860	13.3	
0	74	0	6.05		4.9	11	28	505	23	127		0.8	7.3	4.30	92	0.61	12	3.63	11.0	5157	10.2	
0	66	1	1.65	16.3	7.8	29	37	178	24	260	313	0.5	7.5	3.80	114	0.72	12	4.40	13.0	7625	27.1	
0	34	1	0.65		1.0	28	23	194	16	267		0.9	7.0	4.40	87	1.00	12	3.70	15.0	3850	22.7	101.7
0	60	1	2.59	64.5	3.1	32	45	136	86	264	351	0.4	7.3	4.00	108	0.57	16	4.40	12.5	4310	18.4	95.5
0	79	0	1.77	12.1	2.9	12	18		15	261	233	0.5	7.1	3.80	93	0.93	23	4.70	9.3	3960	23.2	98.6

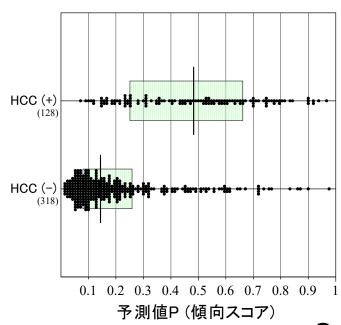

n=452(HCC 129例、LC 323 例)

目的変数: HCC 有効データ数=433 [第1頁:群1]

次数	変数名	β	SE(β)	Z	Р	オッズ比	
0		-7.3821	0.84831				
1	AFP	0.91077	0.15146	6.0132	0.000000	2.4862	
2	ALT	1.0327	0.25087	4.1165	0.000039	2.8087	
3	FIB-4	0.73387	0.24448	3.0018	0.002683	2.0831	

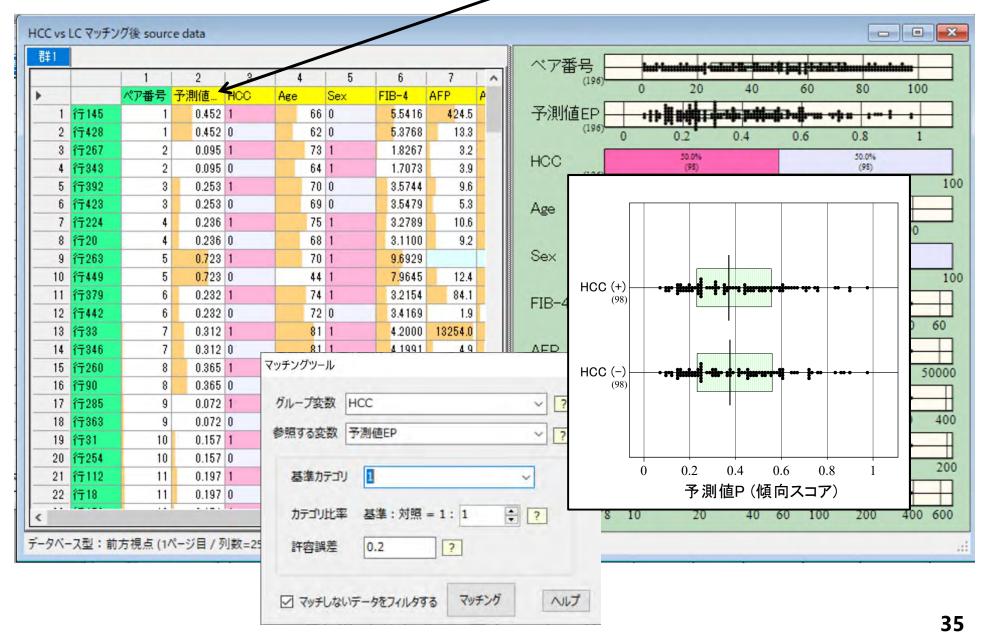
< 回帰の適合度指標 > AIC=286.0616, AUC=0.9197

$$FIB - 4 = \frac{年龄 \times AST}{PLT \times \sqrt{ALT}}$$



Age, Sex, Fib-4から、各症例のHCCらしさ (傾向スコア)を、MLRAで求める

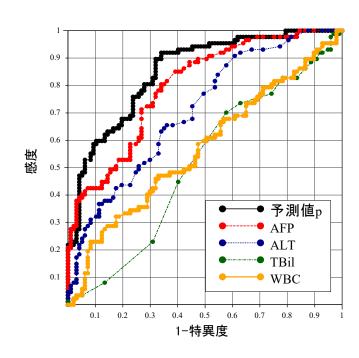
目的変数: HCC 有効データ数=446 [第1頁:群1]


次数	変数名	β	SE(β)	Z	Р	オッズ比
0		-2.4992	0.96608			
1	Age	-0.014346	0.013327	-1.0765	0.281706	0.8664
2	Sex	0.14463	0.24801	0.5832	0.559778	1.1556
3	FIB-4	1.9004	0.20592	9.2288	0.000000	6.6885

< 回帰の適合度指標 > AIC=418.3315, AUC=0.8288

MLRAにより性別・年齢・FIB-4からHCCの傾向スコア(予測確率)を求め、

HCC: LC=1:1で症例をマッチング



目的変数: HCC 有効データ数=184 [第1頁:群1]

次数	変数名	β	SE(β)	Z	Р	オッズ比
0		-7.9131	1.4994			
1	AFP	0.98713	0.20234	4.8786	0.000001	2.6835
2	ALT	0.87235	0.32283	2.7022	0.006889	2.3925
3	TBil	-0.92558	0.42226	-2.1920	0.028380	0.3963
4	WBC	0.021824	7.4114E-3	2.9447	0.003233	8.8677

< 回帰の適合度指標 > AIC=184.7631, AUC=0.8508

肝線維化の程度が同じ条件で、 HCCとLCの鑑別が、4検査の組合せ により的確に行える

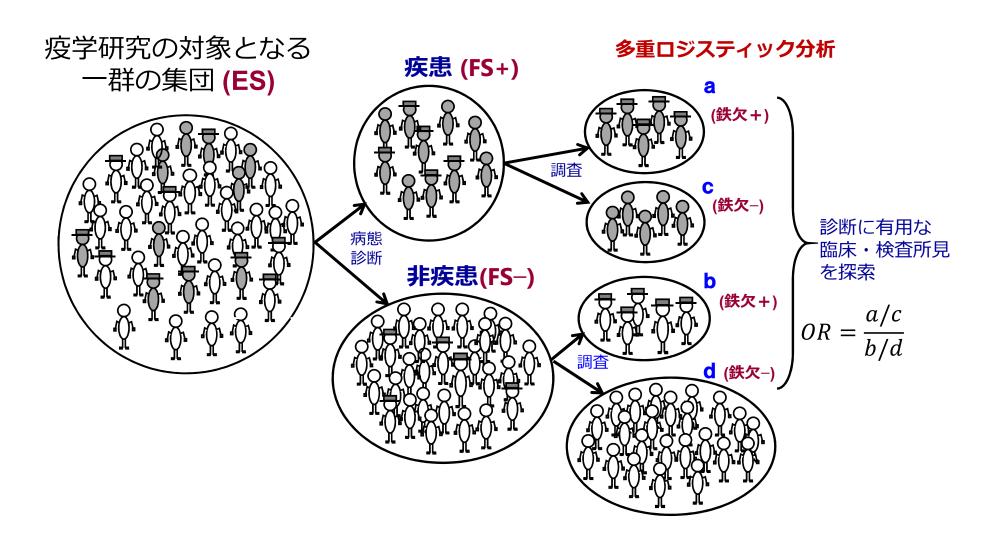
多重ロジスティック分析のポイント

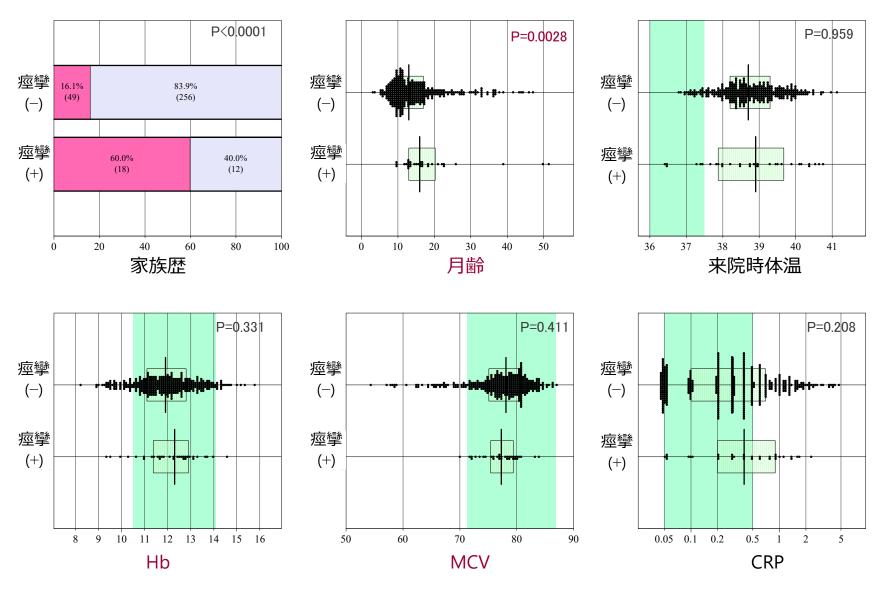
- 回帰係数から個々の要因(検査)の重要性を示す 調整オッズ比(aOR)と信頼区間が求まる
- aORは、説明変数の単位に依存するので、 必ず適切な変化幅を指定して計算
- 説明変数の有用性比較にはP値を用いる。aORの比較は困難
- ■複数所見の組み合わせで、**診断方程式を作成できる** 複合診断の判別度を、ROC分析によりAUCで表せる
- 総症例数が少ないと、過剰適合が生じ再現性に問題あり (総症例数≥100が、めやす)
- 疾患群の割合が少ないと、分析精度が落ちる 疾患症例数Nに対して、説明変数の数の許容限界はN/10

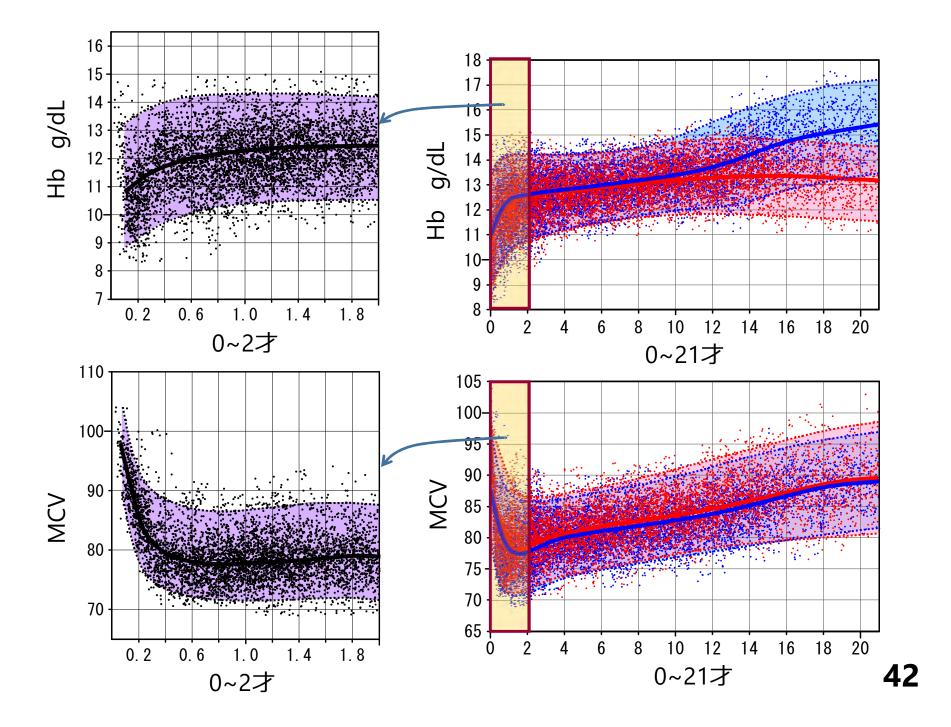
省略したスライド

例題4: 突発性発疹(ES)を対象とした熱性けいれん(FS)と鉄欠乏性貧血の関連性の分析

井上佳也、	他:	日本小り	見科学会雑誌	125(6):	883-891.	2021
刀上压巴、	100	ロイベリン		120(0).	000 001	, 4041


痙攣	家族歴	月齢	性別	体重	来院時体温	WBC	RBC	Hb	Ht	MCV	МСН	MCHC	PLT	Lym	Mon	Gra	RDW	PCT	MPV	PDW	CRP
0	0	3	1	6.0	38.0	38	364	122222	31.1	85.4	29.4	34.4		39.4	9.9	50.7	10.4		8.2	19.1	0.80
0	0	4	0	6.4	37.7	67	406		29.2	71.9	25.1	34.9		67.4	4.2	28.4	12.2	0.15	9.7	17.6	0.40
0	0	6		6.5		109	399		32.1	80.5	27.6	34.3			9.6	51.0	10.6	0.12	8.6	19.4	0.50
0	0	6	1	7.4	39.1	83	454		32.6	71.8	24.2	33.7	26.3		2.5	60.9		0.12	8.6	20.7	0.20
0	0	6	0		37.8	103	518		41.7	80.5		35.5		54.7	4.8	40.5	11.6		7.9	19.1	0.20
0	0	7	1	6.8		103	433		34.8	80.4	26.1	32.5		45.2	3.7	51.1	11.2	0.15		19.1	1.20
0	0	7	1	8.0	39.9	41	357	9.8	28.6	80.1	27.5	34.3			11.4	56.9			7.9	18.3	1.20
0	0	7	1	9.0	39.2	65	411		31.8	77.4	27.7	35.8		39.7	6.3	54.0	11.4	0.19	7.7	18.4	0.90
0	0	7	1	8.3		78	498		35.4	71.1	24.5	34.5			2.8	23.5	11.4	0.13	8.4	18.7	0.05
0	0	7	1	8.1	40.0	57	347		29.1	83.9	29.4	35.1	13.7	26.6	4.1	69.3			8.6	18.8	0.40
0	0	7	0	8.0	39.8	99	511		39.2	76.7	25.4	33.2		30.1	4.5	65.4	11.5		8.0	19.2	1.90
0	0	7	0		39.0		486		35.1	72.2	24.5	33.9			6.5	39.1	13.2	0.17	7.7	18.4	0.40
0	0	7	0		39.2	60	384		27.1	70.6		35.1	30.3			29.1	14.5	0.13	7.7	18.4	0.30
0	0	-		10.0	38.5	88	498		38.6	77.5	27.1	35.0				30.2	12.1	0.23	7.7	17.6	0.05
0	0	8	1	10.0	39.5	55	447		32.0	71.6		34.1	24.6			42.7	12.1	0.10	8.6		0.05
0	0	8	1	7.0	39.9	38	417		34.2	82.0	27.6	33.6			14.2	43.3		0.21	7.7	18.9	0.50
0	0	8	1	9.6		36	435		35.2	80.9	28.7	35.5			2.9	51.8			7.7	18.9	
0	0	8	1	8.3	21774	78	596		46.0	77.2	25.2	32.6			4.8	49.8			9.1	18.6	0.10
0	0	8	1	7.6		42	475		38.5	81.1	28.6	35.3		90.1	6.3	3.6		0.07	7.7	20.3	0.10
0	0	8	1	7.5	39.0	96	494	10.4	31.8	64.4	21.1	32.7	26.9		3.2	55.6			8.4	16.3	0.10
0	0	8	0	8.0	38.8	89	488	7777	33.8	69.3		33.7	35.0		7.0	41.4	12.5		7.6	17.1	0.30
0	0	8	0			59	540		36.3	67.2	23.4		25.5		5.3	29.3	14.8	0.27	7.7	16.3	0.05
0	0	8	0		38.7	50	420	11.5	33.9	80.7	27.4	33.9			3.4	55.0	10.9		8.6	18.2	0.50
	0	8					420		31.7	72.7											
0	0	8	0	δ.Ζ	38.6	62	436	10.9	31.7	12.1	25.0	34.4	24.6	54.0	3.5	42.5	12.6	0.21	8.4	18.1	0.90

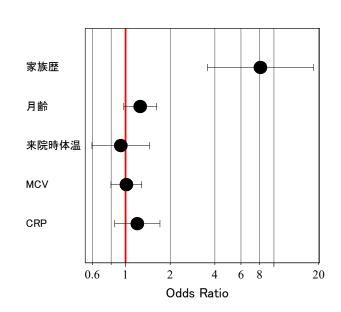

横断的研究


集団調査型(1)診断マーカの探索

(cross sectional study)

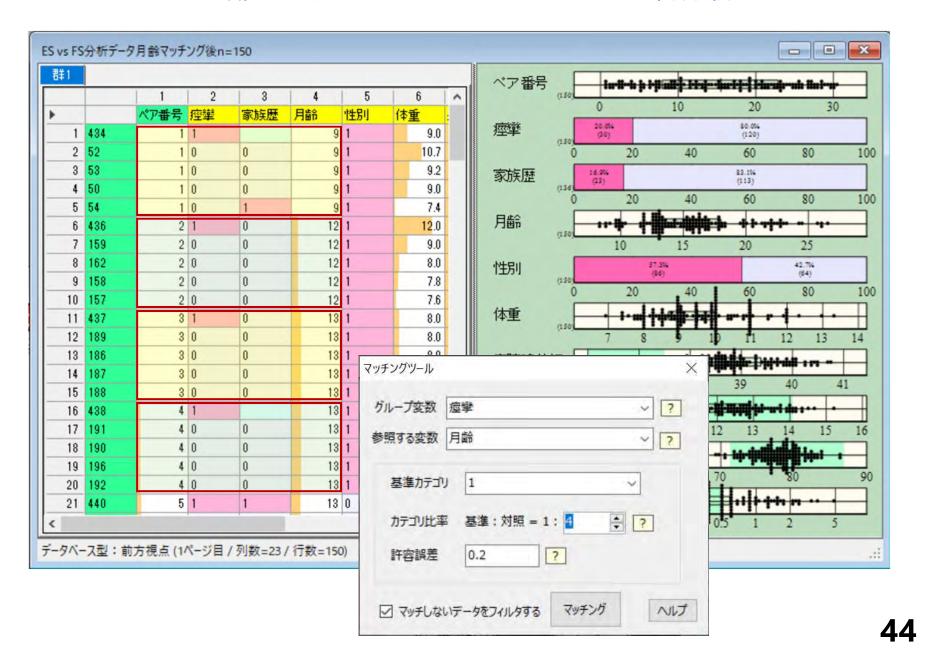
field survey

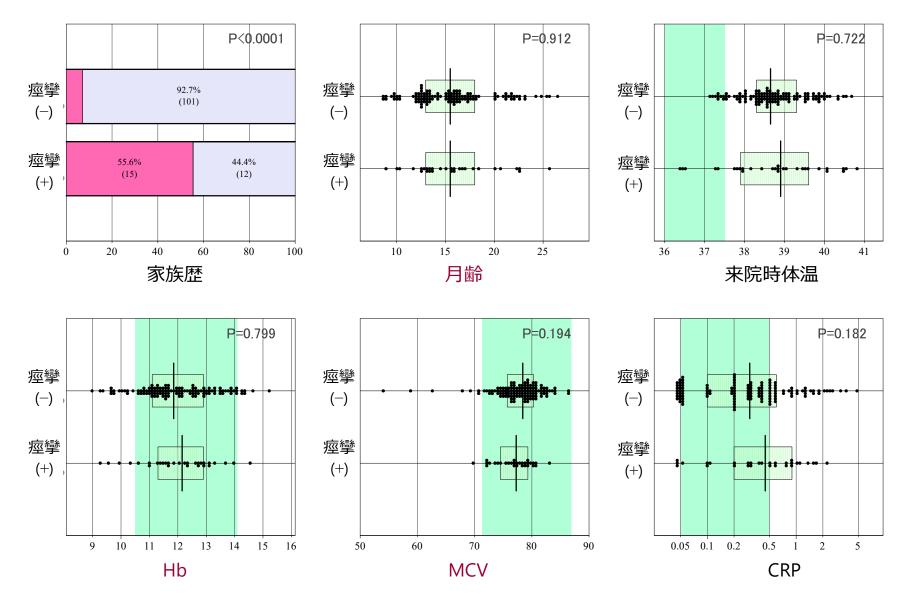
目的変数:痙攣 有効データ数=334 [第1頁:群1]


次数	変数名	β	SE(β)	Z	Р	オッズ比
0		-1.0304	9.4263			
1	家族歷	2.0930	0.41930	4.9917	0.000001	8.1093
2	月齡	0.038078	0.021624	1.7609	0.078258	1.2567
3	来院時体温	-0.072809	0.22788	-0.3195	0.749348	0.9298
4	MCV	4.5718E-3	0.040654	0.1125	0.910462	1.0138
5	CRP	0.18322	0.17892	1.0240	0.305828	1.2011

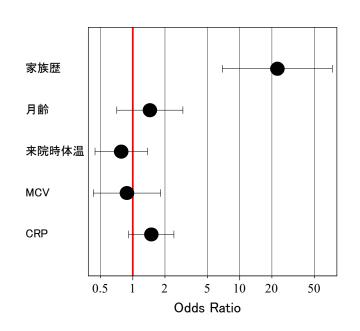
< 回帰の適合度指標 > AIC=182.6863, AUC=0.7846

目的変数:痙攣 有効データ数=334 [第1頁:群1]


次数	変数名	β	SE(β)	Z	Р	オッズ比
0		-3.5110	0.48946			
1	家族歷	2.0821	0.41478	5.0197	0.000001	8.0213
2	月齡	0.038528	0.020010	1.9254	0.054175	1.2601
3	CRP	0.17554	0.17742	0.9894	0.322470	1.1919

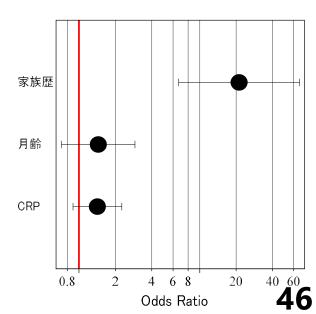

< 回帰の適合度指標 > AIC=178.8033, AUC=0.7847

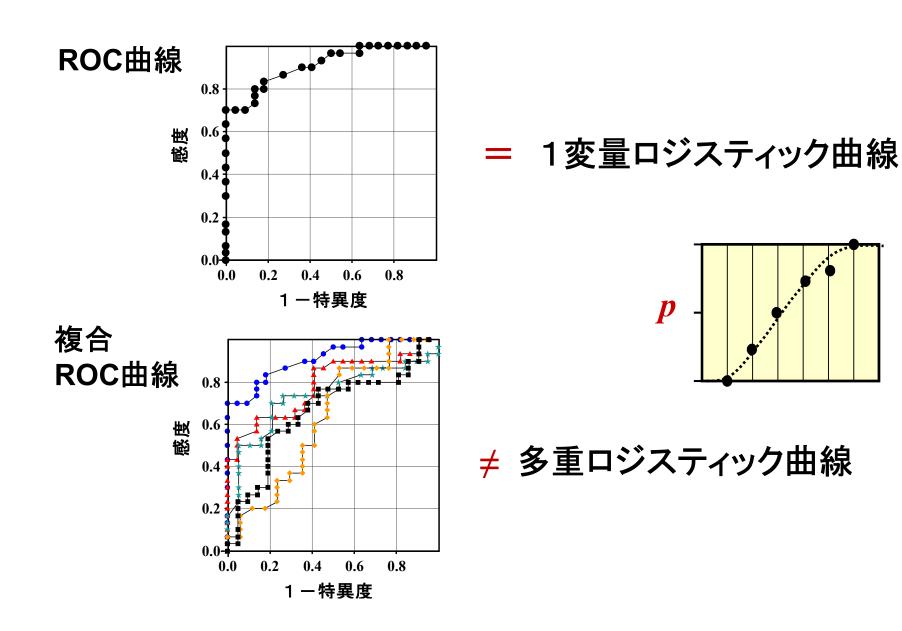
月齢をマッチングさせたデータによる再分析



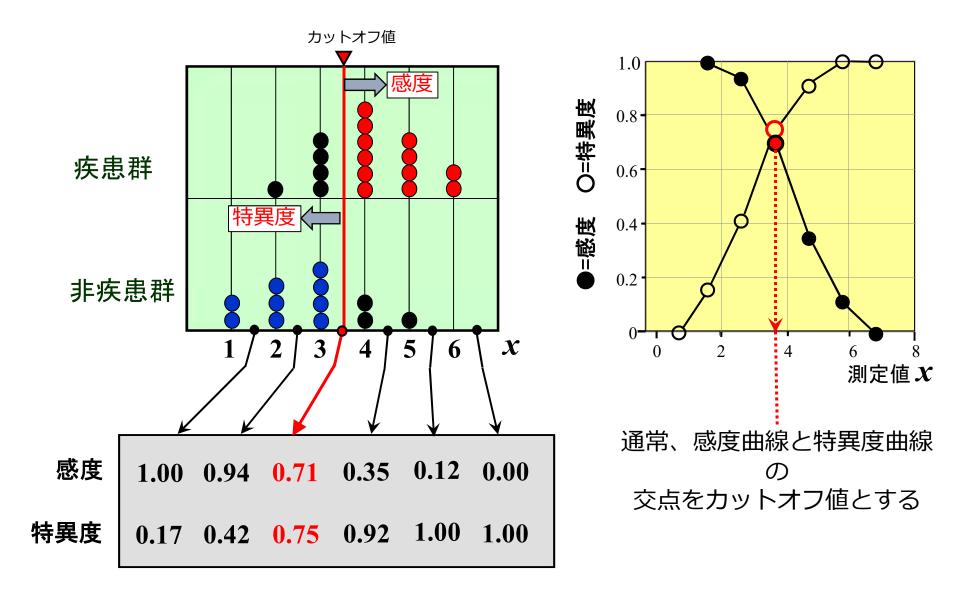
目的変数:痙攣 有効データ数=136 [第1頁:群1]

次数	変数名	β	SE(β)	Z	Р	オッズ比
0		8.4905	12.538			
1	家族歷	3.1148	0.60391	5.1577	0.000000	22.5284
2	月齡	0.061439	0.060523	1.0151	0.310040	1.4458
3	来院時体温	-0.24856	0.28836	-0.8620	0.388698	0.7799
4	MCV	-0.020898	0.061772	-0.3383	0.735135	0.8822
5	CRP	0.39969	0.24840	1.6090	0.107606	1.4914

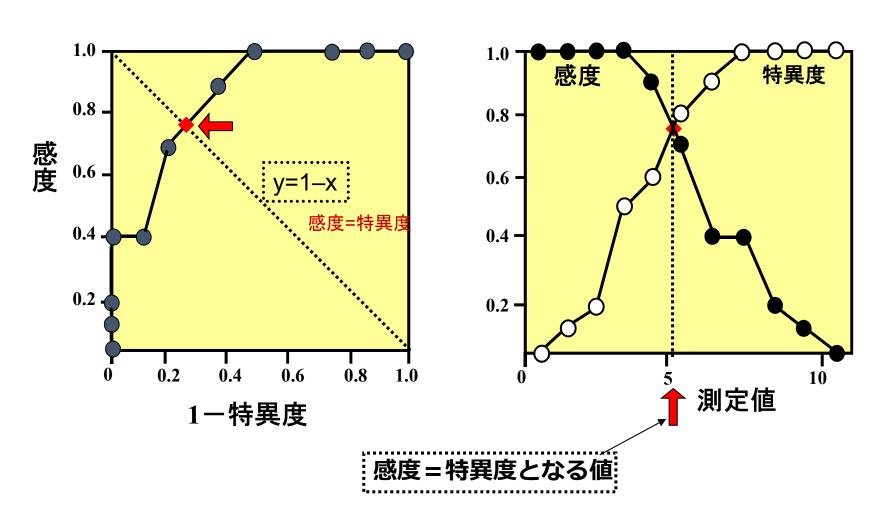

<回帰の適合度指標> AIC=113.9606, AUC=0.8050


目的変数:痙攣 有効データ数=136 [第1頁:群1]

次数	変数名	β	SE(β)	Z	P	オッズ比
0		-2.7900	1.0783			
1	家族歷	3.0511	0.58811	5.1879	0.000000	21.1377
2	月齡	0.061184	0.059539	1.0276	0.304123	1.4435
3	CRP	0.35006	0.23741	1.4745	0.140349	1.4191


<回帰の適合度指標> AIC=110.7915, AUC=0.7992

補足スライド



感度・特異度曲線によるカットオフ値の設定

感度・特異度曲線とカットオフ値の決め方

ROC曲線と対角線との交点のカットオフ値=感度特異度曲線の交点のカットオフ値

